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Abstract- We developed a micro-thermocouple probe in order to 
measure the thermal responses of a cell. A micropipette with a tip 1 
µm in diameter was used for the base of the probe. A Pt/Au 
junction was constructed on the tip. The average thermoelectric 
power of the probe was 2.1 µV/K. The temperature and time 
resolutions of the probe were investigated by using a laser beam to 
irradiate the tip. 
Keywords- Thermocouple, microscale, bio-thermal response, 
micropipette, cell 
 

I. INTRODUCTION 
 

easurements of thermal rapid responses in a 
biological micro-region, particularly a cell, can 

provide new physiological information. It is known that 
cellular temperature change, that is, heat production, is 
caused by the reaction to the administration of a certain 
substance to brown adipocytes or to the electrostimulation 
of neurons. However, a real-time measurement technique 
on a target of a cell has not been established. 
Measurement using infrared imaging microscopy [1] has 
the advantage of non-contact, but the temperature and 
spatial resolutions are lower than the required values. The 
method using temperature-dependent fluorescence [2] has 
problems with temperature resolution and biological 
toxicity. With the recent development of micro/nano 
fabrication techniques, contact measurement by means of 
a sensor probe such as a thermocouple has expanded the 
capabilities of microscale temperature measurement. Fish 
et al. [3] made a thermocouple probe based on a 
micropipette. There are also several reports on the 
development of the thermocouple probe based on the 
atomic force microscope (AFM) cantilever probe [4, 5]. A 
micropipette is suitable for application in cellular 
measurement because a micropipette (glass capillary) has 
been used for cell operation and the injection of DNA 
fragments or substances into a cell. Furthermore, 
micropipettes also have been used to measure the electric 
potential at the cell membrane as a patch electrode with 
the tip improved for contact with the cell membrane [6]. 
Hence, we adopted a micropipette as the base of a 
thermocouple probe. The aim of this study was to develop 
a micro-thermocouple probe and to apply it to the 
measurement of thermal responses of a cell. We describe 
here the thermoelectric characteristics of the developed 
thermocouple probe and the capability of measuring 
thermal responses at the cellular level. 

 
II. FABRICATION OF THERMOCOUPLE PROBE 

 
The basic steps in fabricating a micro-thermocouple 

probe (Fig. 1) were as follows. (1) A glass micropipette, 1 
µm in external diameter and 50 mm in length, was made 
from a glass tube, 1 mm in external diameter, using a 
pipette puller (PB-7, Narishige). This puller partially 
heated a glass tube with a hot wire and drew it with 
weights. The size of the tip depended on the heating 
temperature and the weight. (2) A thin platinum (Pt) film 
30 nm thick was deposited on the micropipette by means 
of the ion-sputtering technique. Before the Pt was 
deposited, a thin chrome film 10 nm thick was deposited 
on the pipette for good adhesion between the Pt and the 
glass. (3) A silane coupler (VM-652, HD MicroSystems) 
was applied as a primer for good adhesion of the 
polyimide coating (Pyralin® PI2556, HD MicroSystems), 
which was used as an insulating layer. We also used SiO2 
instead of polyimide.  (4) A gold (Au) thin film was 
deposited by means of the ion-sputtering technique. (5) A 
coating of polyimide/SiO2 was applied. (6) Finally, a 
coating of MPC (2-methacryloyloxyethyl 
phosphorylcholine) copolymers was put on the tip for 
good biocompatibility. MPC copolymers have an affinity 
for phospholipids due to the phosphorylcholine polar 
groups on the MPC copolymer surface [7]. 

The junction of the Pt and Au was created by the 
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Fig.1. (a) Schematic representation of the structure of the 
thermocouple probe based on a micropipette. (b) 
Microscopy image. (c) Scanning electron micrograph of 
the tip. 
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following two methods. First, when the probe on which 
the liquid polyimide was dip-coated was held upright, it 
was found that the Pt surface was bared at the tip because 
of surface tension and gravity. Second, after the 
polyimide film was formed, an N2-dye-laser beam 

(390nm, max 22 µJ/pulse, 0.5 µm in spot diameter, 
LaserScissorsTM, Cell Robotics) directly heated the tip, 
and the polyimide film within 1 µm in diameter was 
ablated. In both methods, whether Pt surface was bared 
could be judged by measuring the leakage current of the 
probe immersed in an electrolytic solution. However, with 
both methods, it was difficult to precisely measure the 
bared areas. They could be estimated by such techniques 
as scanning electron microscopy, energy dispersive X-ray 
spectrometry, or electrical methods. Although there was a 
problem with the junction to be investigated, we initially 
used the first probe and investigated its characteristic 
features of thermoelectricity. 
 

III. THERMOELECTRIC CHARACTERISTICS 
 
A. Impedance 
 

Resistance of the probe was 347 Ω (S.D.=72Ω, test 
voltage: 20mV, n (probes)=16). The factors affecting this 
value could have been the thickness of the Pt and Au film 
and the junction size. Considering the thickness of the 
polyimide film between Pt and Au, the probe had been 
expected to have large capacity reactance, but the 
reactance at 100kHz was –3 Ω (SD=2 Ω, 20mV, n=16). 

 
B. Thermoelectric Power 

 
The thermoelectric power of each probe was measured 

by using the calibration system shown in Fig. 2. Since the 
thermoelectric power was slight, a preamplifier consisting 
of a non-inverting negative feedback amplifier circuit and 

a low-pass filter circuit was located near the probe. The 
signals occurring after the preamplifier were amplified by 
the main amplifier (AD-641G, Nihon Koden). The tip of 
the probe was immersed into a temperature-controlled 
bath, and its thermoelectric power was recorded. The 
reference temperature was recorded by a T-type small 
thermocouple (200µm in diameter) located at the point of 
symmetry to the tip of the probe as viewed through a 
stereomicroscope. Figure 3 shows the thermoelectric 
power in µV of each probe with temperature differences 
of 14 K and 22 K between the junction and the reference 
point, ∆T. The results of 16 probes are plotted. The 
linearization of these data indicated that the average 
thermoelectric power was 2.1 µV/K (max 5.0 µV/K). It is 
known that the thermoelectric power of Pt/Au thin films is 
less than that of bulk Pt/Au (7.2µV/K). However, the 
reason for the low thermoelectric power seemed to be that 
the conditions of the Pt and Au thin films and their 
junction did not satisfy the quality requirements. For the 
same reason, there was a variety of these thermoelectric 
powers among the probes. In addition, a significant 
correlation between the resistance and the thermoelectric 
power of each probe was not obtained. 
 
C. Temperature and Time Resolutions 
 

In order to evaluate the temperature and time 
resolutions of the probe, the temperature responses caused 
by heating the tip with a laser beam were investigated. In 
the beginning, the irradiation time of the beam from the 
laser diode (650 nm±3%, max 5mW) was controlled by an 
electromagnetic shutter (1/15 sec), and the beam was 
condensed through the lens. Although the received energy 
at the tip could have been estimated from the laser output, 
the irradiation time, and the received area, we identified 
how much the temperature rose from the known 
thermoelectric power. The average peak voltage was 

Fig.2. Experimental apparatus for the measurement of 
thermoelectric power. 
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Fig.3. A plot of the thermoelectric power of each probe. N=32
(16 probes were investigated). 
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equivalent to an increase of 0.25 K, which was in 
accordance with the thermoelectric power. Comparing the 
peak with the amplitude of the remaining low-frequency 
noise, it was obvious that the identification limit in 
temperature was lower than 0.25 K. In this measurement 
system, the time resolution cannot be predicted accurately 
because the irradiation time is rather long and the 
received area of the tip cannot be controlled. 
 

IV. DISCUSSION 
 

The advantages of using a micropipette as the base of 
the thermocouple are as follows. (1) A micro-tip has 
already been formed; (2) the size and form of the tip can 
be changed in making the micropipette; (3) various metals 
containing alloys, which can be coated by ion sputtering 
or vacuum evaporation, can be selected; (4) the injection 
function is combined. Furthermore, considering the 
multi-functionalities of the glass capillary, photo 
stimulation and measurement of an optic fiber [8] and 
strain gauge [9] can be combined. 

Using Pt and Au has the following advantages: (1) the 
thermal expansivity is similar to that of glass; (2) they are 
unreactive; and 3) they are treatable as ion-sputtering 
targets. For modifying temperature sensitivity, however, it 
is effective to use a pair of metals whose thermoelectric 
power is larger than that of Pt/Au. Since it is difficult to 
apply photolithography to a 3-D probe such as a 
micropipette, in this study, we were obliged to use the 
passive method of controlling the junction. In addition to 
ablating the polyimide by laser beam, another technique 
such as ion-beam etching should be used in future studies. 

While improving the probe, it is necessary to reduce the 
noise of the measurement system and to improve S/N by 
an effective signal processing. One must especially take 
into account the fact that the thermal conductivity of 
liquid (culture) is 27 times larger than that of air and it is 
difficult to measure thermal changes in liquid. However, 

it is possible to make a micropipette penetrate or attach to 
a cell membrane and to enhance thermal conduction to the 
probe. 

The developed thermocouple probe is currently applied 
to the measurement of the thermal responses of a cell (Fig. 
4). Our interest is focused on the heat production of 
various cells to cytokines, nerve transmitter substances, or 
antibiotic substances. 
 

V. CONCLUSION 
 

We developed a micro-thermocouple probe in order to 
measure the thermal responses of a cell. A micropipette 
with a tip 1 µm in diameter was used for the base of the 
probe. A Pt/Au junction was constructed on the tip. The 
result of calibration with a temperature-controlled bath 
demonstrated that the average thermoelectric power was 
2.1 µV/K. Voltage changes caused by heating the tip with 
a laser beam were measured in order to evaluate the 
temperature and time resolutions. The results indicated 
that temperature changes of less than 0.25 K could be 
detected. In the future, we would like to improve the 
thermoelectric performance of the probe and apply it to 
the measurement of the thermal response of a cell. 
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